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Abstract

Smart home design has undergone a metamorphosis in recent years. The field has evolved from 

designing theoretical smart home frameworks and performing scripted tasks in laboratories. 

Instead, we now find robust smart home technologies that are commonly used by large segments 

of the population in a variety of settings. Recent smart home applications are focused on activity 

recognition, health monitoring, and automation. In this paper, we take a look at another important 

role for smart homes: security. We first explore the numerous ways smart homes can and do 

provide protection for their residents. Next, we provide a comparative analysis of the alternative 

tools and research that has been developed for this purpose. We investigate not only existing 

commercial products that have been introduced but also discuss the numerous research that has 

been focused on detecting and identifying potential threats. Finally, we close with open challenges 

and ideas for future research that will keep individuals secure and healthy while in their own 

homes.
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1. Introduction

Over twenty years have passed since Mark Weiser proposed the notion of ubiquitous 

computing as the new computational model in which technologies disappear into the fabric 

of everyday life [1]. In many ways, smart homes embody this vision because sensors 

embedded into everyday environments unobtrusively collect data that monitor the state of 

the physical environment and its residents while everyday routines are performed. The 

computational component then reasons about the collected information in order to take an 

action that optimizes goals such as comfort, safety, or productivity.

While smart homes initially consisted of theoretical designs and smart laboratory 

experiments, they are rapidly maturing [2]–[5]. The results of this evolution include number 

of actual prototype smart homes [6]–[13], associated public sensor datasets [14]–[23], and 
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commercial products [24]–[26]. Smart homes are used for a diverse range of applications 

including activity recognition [27]–[37], health assessment and assistance [38]–[42], 

environment quality monitoring [43], resource efficiency [44]–[47], and home automation 

[48].

In this paper, we take an in-depth look at smart home technologies that can be used for home 

and resident security. Individuals spend a majority of their time in their home or workplace 

[49], and for many, these places are our sanctuaries. As such, smart home technologies need 

to contribute to maintaining the safety of residents by preventing as many threats as possible, 

accurately detecting threats that do occur, and responding quickly and effectively to them.

As Figure 1 shows, a smart home collects data from sensors embedded in the environment. 

Based on the sensed information, the home reasons about the potential threat and takes an 

action based on the nature and level of threat that is posed. These three steps – sense, assess, 

and act - serve as the basis for our coverage of current research and technologies in secure 

smart homes. We initially describe different types of security issues that smart homes may 

face and illustrate ways in which the home technology can assist. Second, we then describe 

current stand-alone sensor systems that detect specific types of threats and summarize 

current approaches that are taken to responding to threats. Third, we focus on the area that 

has received the greatest amount of research attention, namely assessing and identifying 

threats based on sensor data. Finally, we close with a discussion of ongoing challenges for 

secure smart homes and ideas for future research directions.

Here we motivate the survey of secure smart home technologies through a series of scenarios 

that illustrate the types of threats that can be encountered in smart homes. Each scenario 

highlights a different type of security challenge and the role that smart homes can play in 

assisting with sensing, assessing, and acting on the threat.

Scenario 1: Intruder detection

Mary lives with her family who are all away for the day. During the morning, the home 

detects a person's arrival. The house recognizes that the time of day and the type of car fit 

those of a delivery person. The home provides access to the garage to drop off the items and 

notifies Mary. When Mary's husband Bob returns home in the afternoon, the home registers 

his presence and lets Mary know. Late in the evening, the home senses an unusual entry 

through the window. The camera is turned on to further identify the individual and to stream 

the video to Mary and Bob. They confirm that the individual is their son, who did not have 

his key and was entering through a window.

Scenario 2: Health event detection

Phil is an 81-year-old man who was diagnosed with Parkinson's Disease five years ago. His 

mobility has been declining and when getting out of bed one evening he stumbles and falls. 

Phil is unable to get up to call for help but the home detects the sleep interruption and the 

subsequent lack of movement. The home asks Phil to confirm he is okay, and when it 

receives no response, the home contacts emergency services.
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Scenario 3: Building system failure detection

Security of smart homes extends beyond individual homes to communities of residents. One 

complex included fifty apartments, each of which is a smart residence and which share some 

basic information between them such as indoor air quality, temperature, and electricity 

usage. When the apartments noted that the levels of volatile organic compounds (VOCs) in 

five of the residences suddenly rose beyond safe levels, the compound notified the residents 

in all of the apartments to leave their homes and not return until the situation had been 

addressed. One of the apartments noted that its resident had been smoking in an apartment 

which was being remodeled and suggested that the combination of smoke and open toxic 

chemicals may have contributed to the problem.

These scenarios highlight the diverse nature of security issues that are faced by residents and 

thus by smart homes as well. A common theme of home security is detection and prevention 

of intruders, as shown in Scenario 1. However, smart homes that provide security should 

also be sensitive to health issues that can jeopardize the well-being of residents, as described 

in Scenario 2. This includes detection of falls, lack of movement, and significant changes in 

behavioral patterns [50]–[54]. In the same way that the health of a smart home resident can 

be monitored by a secure smart home system, so the health of the physical home 

environment can and should be monitored. For example, as described in Scenario 3, the 

building can be subject to gas leaks, freezing pipes, fires, and other issues that can threaten 

the health of residents as well as the building [55]. Many of the sensor, assessment, and 

action strategies can be used across these scenarios as we will see throughout the paper.

While the scenarios illustrate traditional security threats that can be addressed by a smart 

home, the smart home technology itself can introduce new threats. This motivates the need 

for smart home systems to be robust and resilient [56]. In particular, if there is a sensor or 

system failure, the home must still provide protection and needed assistance. Therefore, the 

smart home itself needs to detect system anomalies and failures in its hardware, software, or 

communication components [57]. Smart home technologies and the more general Internet of 

Things technologies also introduce a whole new type of intrusion, namely hacking into the 

technology infrastructure [58], [59]. Currently smart homes are fairly vulnerable to hacking 

[60] and this can lead not only to costly pranks (e.g., run the washing machine multiple 

times) but also life-threatening manipulations (e.g., instead of turning the oven up to 150 

degrees, turn the sauna up to 150 degrees) [58].

2. Sensing Threats

As shown in Figure 1, the first step of a secure smart home is to sense the current state of the 

environment and the residents. Smart home sensors are very diverse and often include a 

subset of sensors for motion, temperature, lighting, humidity, door use, appliance use, and 

power consumption, as well as cameras and microphones. With the advent of the Internet of 

Things (IoT) [61], there is a wealth of devices that provide insights and use the Internet to 

communicate with each other as well as the resident. In this section, we examine a sampling 

of technologies that provide sensing capabilities specifically for the purpose of providing a 

secure environment.
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Video cameras are a traditional mechanism for monitoring an environment. They are found 

in many public venues and provide records of events as well as remote or even automated 

sensing of threats. Recently, companies including iControl, Nest, SmartThings, Vivint, and 

Ring have enhanced the traditional camera system for the purpose of smart home safety 

monitoring. Vivint and Nest cameras can send alerts to homeowners when they detect 

activity, at which point the resident takes over the task of interpreting the data and acting on 

it. Ring is unique because it provides a smart doorbell system by connecting the doorbell to 

the camera [62]. iControl is even more integrative, because the camera is combined with 

motion detection, sound detection, and an intruder siren [63]. Alternatively, SmartThings not 

only facilitates camera-based monitoring and resident alerts, but other devices can be 

connected as well such as door locks to help residents take remote action in response to 

possible threats [64].

A second source of ambient sensing in the home for security is audio. Zhuang et al. [65] use 

Gaussian mixture models to analyze data from a single microphone to specifically detect 

human falls. Moncrieff et al. [66] scale up the role of the audio signal by quantifying a 

measure of home “anxiety” based on unusual loud noises that are detected by microphones 

throughout the home. The microphone is accompanied by a wearable accelerometer to detect 

whether the resident has experienced a fall.

Commercially-available home security sensing technologies often rely on the resident to 

interpret data and suggest actions. This process can be made more automated through the 

use of biometrics. Biometrics will automatically recognize individuals based on unique 

anatomical traits including voice, gait, retina, and face [67], [68], as well as body shape 

(anthropometry) [69], footstep shape [70], body weight [71], and heart beat pattern [72]. 

While biometrics are used frequently for large buildings and operations, they are not as 

frequently incorporated into individual homes due to the amount of machine learning-based 

model training that is involved as well as privacy issues. In the context of individual homes, 

researchers often instead require that residents carry devices to identify themselves [73], 

[74]. Another approach to recognizing individuals in the home is to recognize behavioral 

patterns, or behaviometrics [75], rather than just physical properties, or biometrics. 

Behaviometric-based approaches will be discussed in more detail in Section 4.

An advantage of using the sensor packages described in this section is that they provide a 

rich source of fine-grained information obtained from video, audio, and specific biometric 

devices and can ultimately produce a more accurate interpretation of potential threats. This 

level of information does come at a price, however. Most of the sensors operate with a well-

defined field of view, which is the total physical area that is observable by a sensor. 

Therefore, they need to be placed at locations that would be most likely to encounter the 

home threats. Employing a large number of such devices would be costly in terms of the 

initial purchase, the maintenance, the processing of a large amount of data, and the power 

consumption. On the other hand, utilizing too few devices or placing them in nonoptimal 

locations will negate their security benefit.

Another challenge posed by these security devices is the potential loss of privacy. Even if the 

captured information is only stored locally, many individuals feel that the uninterrupted 
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monitoring by the devices is an invasion of their privacy. In fact, many residents turn off 

these devices when they enter the home [76], relying on the fact that most crimes happen 

when the home is empty. However, another frequent time for crimes is when the residents 

are sleeping, and turning off devices in these situations leaves residents vulnerable to threats 

[77].

3. Acting in Response to Threats

A smart home is typically infused with sensors to monitor the environment. As we described 

in the last section, these sensors can provide a fairly comprehensive analysis and 

identification of potential threats. Assuming that the collected information is processed and 

analyzed for the likelihood and type of threat (discussed in the next section), a smart home 

will ideally take appropriate steps to act on the threat.

Research and technology development in the area of smart homes has evolved to the point 

where homes can take autonomous actions in response to detected security or health risks 

(see Figure 2). As described in Section 2, existing commercial systems automatically 

provide residents with real-time information when an alert is generated, including notifying 

them of visitors and providing streaming video identification.

The variety of steps that a smart home can and should take is not limited to alerting and 

informing the resident, however. In their work, Chitnis et al. [78] surveyed urban, suburban, 

and rural dwellers from a diversity of backgrounds including homeowners with children who 

are left unsupervised and individuals with traditional lock-and-key systems. As a result of 

the survey they proposed an infrastructure that granted different types of home access based 

on biometric matches. As described in Scenario 1 of Section 1, some individuals may only 

have access to the garage or front porch while repair technicians would also be granted 

access to areas of the house that need their attention. If an individual manages to enter 

unauthorized areas of the house, the homeowner is notified.

Homeowners may choose to let ambient sensors run continuously and use the more intensive 

data-gathering devices such as cameras only when they are out of the home. In such cases, 

Petersen et al. [79] propose a method to automatically detect these situations and turn on 

video cameras. In this work, motion and door sensors continuously collect data and a 

machine learning system is trained to map these sensor readings onto a label indicating 

whether the residents are at home or away from the home. This approach extracts features 

including the number of sensor firings during each five-minute interval, an indicator of 

whether or not the resident is in bed, whether the door sensor was the last reading in the 

interval, whether the door sensor was the first firing in the interval, and whether the last 

sensor in the interval emanated from a room connected to an external door. A logistic 

regressor yielded a sensitivity of 0.939 and a specificity of 0.975 on sample data collected 

from actual smart homes, which are strong preliminary results supporting this approach.

While intrusion detection is a common application for security systems, much of the 

technology can also be applied to health monitoring and assistance as well. In the case of 

work by Dodge et al. [80], by Hodges et al. [81], by Dawadi et al. [82], and by Lotfi et al. 
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[83], unexpected behavioral patterns are viewed as a health risk for individuals who are at 

risk of cognitive decline. These researchers have found that an increase in the number of 

activity anomalies and variation in behavior patterns such as activity times and walking 

speed are correlated with changes in cognitive health. As in the case with the intrusion 

detection research, these findings provide insights that can be used by smart homes in order 

to keep residents safe. For example, residents and their caregivers can use this information to 

change the level of care that the individual needs.

In research by Ali et al. [84] and of Das et al. [85], threats are detected in the form of 

abnormalities in how residents perform their daily activities. For many individuals, these 

variations would not be considered a risk. However, for individuals with memory limitations, 

performing daily activities independently is critical. Functional impairment has been 

associated with increased health care use and placement in long-term care facilities [86], 

[87], days in the hospital [88], falls [89], conversion to dementia [90], [91], and morbidity 

and mortality [92]. When an abnormality is detected, the individual can be prompted for the 

next activity step to help them keep on track and successfully complete the activity without 

caregiver intervention. This in turn increases functional independence and reduces the 

burden for caregivers.

4. Detecting and Assessing Threats

In this section, we close the loop shown in Figure 1. Both research and commercial efforts 

have made contributions in the areas of developing sensors for secure homes and acting 

autonomously or in partnership with residents to response to threats. The largest body of 

research, however, has focused on the middle step, analyzing collected sensor data to detect 

and assess potential security threats. We organize our discussion of threat assessment in 

order of scale. We start with describing approaches to detect specific security-related 

situations, move toward summarizing approaches that perform general detection of threat-

based anomalies, and finish with a discussion of security-based research in other fields that 

can impact future work on secure smart homes.

4.1. Detecting resident-based target states

As demonstrated by the scenarios at the beginning of this paper, security is a broad term that 

encompasses many aspects of health and safety. Instead of trying to tackle the problem of 

home-based security as a whole, some researchers focus on one piece of the problem. One 

targeted situation is one in which the home resident is inactive for an unusually long period 

of time. Cuddihy et al. [93] focus on detecting times with unusual bouts of inactivity, which 

can occur when a resident falls or has other health issues that may require intervention. This 

is a situation that is of particular interest for smart home developers but is difficult to address 

without special-purpose hardware. In this approach, Cuddihy employs motion and door 

sensors in smart homes that are trained based on 10 days of data to learn normal ranges of 

activity / inactivity for each 30-minute interval throughout the day. The main challenge with 

software-based approaches to detecting inactivity is a high rate of false positives. As a result, 

their evaluation on smart home data focused on reducing the number of alerts to a goal of at 
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most one per month (indicative of an acceptable number of false positives), which they 

satisfied for 91% of the collected data.

Another situation that has received a great deal of attention is detecting when an individual 

falls in their home [51], [52], [94]. Approximately one in every three older adults 

experiences a fall [95]. Because the global population is aging and individuals want to stay 

in their own homes, detecting such falls is a concern not only for older adults and their 

caregivers but also for society as a whole. While research on using wearable sensors to 

detect falls based on accelerometer and gyroscope readings abounds [51], [96], detecting 

falls with home-based ambient sensors can be more difficult. Some smart home-based 

research has been pursued, however. These methods typically use microphones [97] or video 

data [98] to determine when a fall has occurred.

Of these approaches, video methods have been shown to be the most able to discern falls 

because of the fine-grained information that is available. However, video approaches also 

raise concerns for maintaining resident privacy. This concern can be addressed in part by 

using depth cameras to capture only figure silhouettes rather than detailed images. Stone and 

Skubic [94] introduce such a method using the Microsoft Kinect. Theirs is a two-stage 

method that first extracts the foreground information and second generates a confidence that 

a fall has occurred. This method is trained and tested on 3,339 days of continuous data for 

16 residents in independent apartments containing 454 falls (9 of which naturally occurred 

during the data collection). To highlight the foreground information, the background is 

subtracted from the Kinect data by maintaining a distribution of pixel values as shown in 

Figure 3. Assuming that background information is less dynamic, depth camera data is 

subtracted if it matches the earlier distributions, indicating that it represents “inactive” 

information. The resulting extracted information is the dynamic foreground information. 

Once features are extracted from the foreground depth information, an ensemble of decision 

stumps (single-feature decision trees) is used to generate a confidence that a fall has 

occurred.

Another approach that does not rely on video data is to use vibration sensors in the floor to 

detect falls. As an example, Alwan et al. [99] embed a piezoelectric sensor in the floor. 

Vibration patterns are learned for typical movements such as walking and used to distinguish 

typical movements from possible falls. The challenge for all of these systems is obtaining 

enough training data to detect and recognize the many types of falls that can occur such as 

slips, trips, stumbles, and slumps.

Audio sensors face similar benefits and concerns. Microphone arrays can provide fine-

grained information to sense the state of the home. With the increasing popularity of voice-

interactive products such Amazon Echo or Google Home, they will be easy to integrate into 

lifestyles and serve multiple purposes. As with other sources of rich information, however, 

they do provide a privacy challenge that will need to be addressed in ongoing research.

4.2. Detecting home-based target states

In this previous section, we described methods that detect target states for a smart home 

resident that can represent health or security risks. In contrast, here we examine approaches 
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to detecting specific home states that highlight security needs. These approaches target 

recognizing whether individuals are in the home and whether the individuals that are present 

are residents, visitors, or intruders. The first method we include is a machine learning 

method that Teoh and Tan [76] designed specifically to recognize intruders. The authors 

intend homeowners to use this method as a precaution to maintain security when they are 

out of the home. A neural network is trained based on input from motion sensors, closed-

circuit televisions, RFID tags, magnetic contact switches, and glass breakage sensors. The 

neural network maps extracted features from these sensors onto a binary output indicating 

whether the current scenario is an intrusion or not. As can be imagined, the most difficult 

challenges with this approach are obtaining realistic training data (without inviting criminals 

to break into test homes!) and dealing with the severe class imbalance that will result.

The next step in recognizing anomalous home behavior is to model movement patterns 

through the home with the purpose of determining whether or not visitors are present. This 

goal is complementary to the work of Teoh and Tan because it operates effectively when the 

resident is at home. In this case, the algorithm can be used to inform the resident that others 

are in the home. If the visitors are unexpected then this can represent a risk not only to the 

home and belongings but to the resident as well. In this work, Aicha et al. [100] model 

transitions between sensors that are typical when the resident is alone and when visitors are 

present. For a particular time slice t, NM(t) represents the number of transitions between 

motion sensors that are not near either other in the smart home and ND(t) represents 

transitions that include the front door sensor. The approach employs a Markov Modulated 

Poisson Process, or MMPP. Because the MMPP is built on a Markov chain it follows 

expected sequences between resident alone time, visitor time, and unusual absence of 

visitors, as shown in Figure 4. In addition, the MMPP utilizes a Poisson process that can 

model periodic influences such as daily visits from a caregiver, weekly visits from a maid 

service, and monthly visits from children. The model outputs a value, z(t), that indicates 

whether the current activity in the home is normal, if there is an unusual visit, or if there is 

an unusual lack of visits. An appealing feature of this approach is that it can scale to larger 

numbers of residents and visitors. In contrast to work by Petersen et al. that also detect 

whether visitors are in the home [101], the approach described by Aicha is unsupervised. As 

a result, it does not require that large amounts of labeled training data are available. The 

approach was tested on continuous data collected in actual smart homes for 16 residents. 

The data was based on documented visits from cleaners, care providers, and family 

members.

The final work we include in this section considers the final piece of the home state puzzle, 

namely whether the resident is at home. Petersen et al. [79] seek to determine whether the 

resident is in or out of the home in order to assess loneliness and well-being of older adults. 

However, this is valuable for security purposes because times when the resident is out of the 

home are particularly at risk for intruders or for dangerous changes in the environment (e.g., 

gas leaks, water leaks) that may need to receive a timely intervention. These researchers 

collected data from smart home sensors and extracted relevant features for each five-minute 

time window including number of sensor firings, presence in bed, and front door usage. The 

smart homes included a video camera that was used for ground truth labels. Instead of 

collecting continuous video data, video was only recorded for 5 seconds each time motion 
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was detected. A logistic regressor yielded a sensitivity of 0.393 and specificity of 0.975 for 

data collected from 150 older adults for 30 days each.

4.3. Detecting home-based anomalies

Targeting specific resident states or house states is valuable for home-based security because 

the targeted states are known to be security risks. While recognizing these states is 

challenging, they are simpler than the task of finding a more varied class of security threats 

using a single technique. To find a larger collection of possible threats, researchers often turn 

to anomaly detection. As Chandola states, anomaly detection is “the problem of finding 

patterns in data that do not conform to expected behavior” [102]. We first focus on specific 

classes of anomalies that can be detected directly with smart home sensors then transition in 

the next section to finding anomalies based on activities that a resident performs in the 

home. There are several standard techniques for finding anomalies or outliers that are 

commonly employed. One such technique is to cluster, or group, data points into clusters 

based on their distance to the cluster center. Once the data is clustered, points that are far 

from all of the cluster centers can be labeled as outliers and can be considered as anomalies. 

In cases where the data is normally distributed, z scores can also be computed. The z score 

for any data point is its distance from the sample mean, divided by the sample standard 

deviation. Z scores greater than 3.5 are typically considered to be outliers. Although the 

methods in this section do not rely on activity recognition, they are still more complex than 

is found with many anomaly and outlier detection methods. This is because such methods 

are typically univariate and thus cannot handle the multi-variable, complex data collected by 

smart home sensors.

In our treatment of home-based anomalies, we start at the lowest information level and work 

our way up to more abstract information. As described by Youngblood and Cook [103], the 

lowest level of a smart home infrastructure is the physical sensors. Correspondingly, there 

are research groups who identify anomalies based on unusual sensor readings and unusual 

sequences of sensor firings. As an example, Ordonez et al. [104] use low-level sensor data to 

identify outliers indicative of behavioral anomalies. This group collects data of typical 

sensor timings for motion, pressure mat, and door switch sensors. From this data, Bayesian 

statistics are used to capture the typical sensor firing time, the sensor firing sequence, and 

the duration of each sensor state. Outliers can be detected based on a Bayesian model and 

used to indicate anomalies.

Haque et al. [105] recognize the fact that some sensor-based outliers may be due to sensor 

faults rather than changes in the system being monitored. To mitigate the false alarms that 

can be generated due to sensor failures, they dynamically adjust decision thresholds. 

Traditional SMO-based regression is used to generate a predicted sensor reading. If the 

difference between predicted and actual values is greater than a threshold than an anomaly is 

reported, and the threshold is adjusted incrementally to reflect the actual amount of error that 

is normal for a given individual. Majority voting is then used to combine anomaly scores for 

all of the sen sors and an anomaly is reported only if the majority votes for this label. The 

combination of threshold adjusting and majority voting reduces the occurrence of false 

alarms that can happen due to issues such as failure of individual sensors.
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In a smart home, the location of residents within a home can be fairly easily to triangulate 

using infrared motion sensors that fire whenever a heat mass the size of a small child or 

larger moves in its field of regard. Door sensors, window sensors, and object sensors also 

help to identify where people are located inside the home. There is thus a natural 

progression toward monitoring time spent in locations throughout the home in order to 

determine anomalies. Lotfi et al. [83] take this approach to analyzing smart home data 

collected in the homes of older adults. Each firing of a motion or door sensor is represented 

as a tuple consisting of the sensor location, the sensor firing time, and amount of time the 

sensor remains in the “ON” or “OPEN” state, indicating that the resident is staying in one 

location. They cluster all of the data points and use the techniques described earlier such as 

distance from cluster centers to identify points that are potential anomalies in terms of a 

resident's location. These points can be used to inform a care provider to check on the health 

of the resident.

Aran et al. [106] take a similar approach to the one proposed by Lotfi et al. Like Lotfi's 

work, Aran infers the current location of a smart home resident and uses k means clustering 

to group similar data points based on time of day, location, and time spent in the location. 

The clustering algorithm provides a convenient basis for determining outliers as data points 

that do not fit well in any of the existing clusters. Unlike the Lotfi study, Aran includes not 

only locations in the home but also time spent out of the home. Anywhere outside the sensed 

home is treated as yet another location and can be monitored for unusual times the resident 

is out of the home, unusual-length stays in the home without going out, and unusually long 

or short outings.

Novák et al. [107] also represent data points as a combination of sensor location, time, and 

duration in a particular state. Like Lotfi, the goal of this group is to provide early alerts for 

anomalous behavior based on unusual location-based activity in terms of being in an unusual 

place at an unusual time, staying in the location an unusually long period of time, or staying 

in the location an unusually short period of time. Instead of applying a k means clustering 

algorithm, Novák uses the collected data to learn a Self Organization Map (SOM), which is 

a type of self-structuring neural network. The SOM itself visualizes points that are far from 

its neighbors and can therefore be further analyzed as potential anomalies.

Virone et al. [108] integrate their anomaly detection algorithm into a complete graphical 

alert system for residents and caregivers that provides a visual indication of behavioral 

outliers at different time scales. This group observes the amount of time that is spent in a 

room of the house on each occasion as a separate data point. Data is broken into single-hour 

time windows and these points produce circadian rhythms over a twenty four-hour period 

that can be analyzed for normalcy and anomalies. As with the other projects, this group 

detects unusually long or short durations spent in a room and also detects unusually high or 

low levels of activity within the room at a given time. Figure 5 shows the interface 

displaying various alarms, where each activity is associated with a particular location in the 

house.

The papers summarized in this section focus on locations where a smart home resident 

spends time. This focus simplifies the data analysis to an extent because the current activity 
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does not need to be inferred. Some of the papers categorized as location-based anomaly 

detection do refer to monitoring activities but they equate activity with a distinct region of 

the home (or outside the home). For some activities this approach will work, but in other 

cases a single room may be used for multiple activity functions (e.g., the bedroom may be 

used for reading, working, and watching TV in addition to sleeping). In the next section, we 

consider approaches that look for anomalies at the level of individual activities.

4.4. Detecting activity anomalies

We now look at detection of anomalies at a deeper level of detail, namely within and among 

activities that are tracked in a smart home. Learning and understanding observed activities is 

at the center of many fields of study. The challenge of activity recognition is to automate 

activity learning by mapping smart home sensor data to a label that indicates the 

corresponding activity that an individual is performing. Activity recognition data consists of 

sensor firings with the corresponding sensor identifier and time. Features are extracted from 

sensor data at a particular time and a supervised learning algorithm maps the features onto a 

value from a list of possible activities (e.g., sleep, eat, cook, take medicine, exercise, work, 

read) which indicates the activity that is currently being performed. Because of the insight 

that automated activity recognition sheds on human behavior and the valuable context 

activity labels bring to smart homes, activity recognition is a highly-investigated area of 

research [27], [29], [30], [109], [110]. Activity models are created from a variety of methods 

including support vector machines, Gaussian mixture models, decision trees, and 

probabilistic graphs.

As in earlier sections, we first examine approaches that investigate specific constrained 

situations then transition to consider more general approaches. An example that falls into the 

first category is work by Han et al. [111]. This approach assumes that an activity recognizer 

is available that labels sensor data with activity labels for eating, toileting, and sleeping. 

They also monitor overall movement in the home and participant weight. Han uses 

recognized activities to identify specific changes in behavior. If the participant is diagnosed 

as depressed they look for changes of concern that include less movement around the house, 

decrease in hygiene and eating, and more severe sleep disturbances. If the participant is 

diagnosed as diabetic they look for more frequent eating, drinking, sleeping, and toileting. 

These specific changes are known to be problematic for the target populations and represent 

a health risk when they are recognized by a smart home.

Williams and Cook [112] also use activity recognition to look for specific classes of 

changes. They are particularly interested in using smart homes to perform health monitoring 

for individuals who may be experiencing sleep disturbances due to PTSD or decline in 

cognitive health. After labeling sensor data with forty possible activity labels, they segment 

the data into waketime behavior and sleeptime behavior, then collapse all of the activity-

based behavior parameters into two scores, one for wake and one for sleep. They then use 

past and current wake scores to forecast the upcoming sleep value and use past and current 

sleep scores to forecast the next day's wake value. Their motivation is to predict and detect 

sleep disturbances in order to circumvent them by suggesting changes in wake behavior that 

may prevent the predicted sleep problems.
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Analysis of the literature reveals a number of approaches that apply activity recognition to 

label sensor data, then look for anomalies in the sequences of activities that are observed. 

These methods are very similar to those of the location-based anomaly detection approaches 

described earlier in this section, although they are applied to activity sequences rather than 

location sequences. Work by Mocanu and Florea [113], Cardinaux et al. [114], Elbert et al. 

[115], and Mori et al. [116] all develop automated approaches to detecting deviations in 

daily activity patterns. These include activity start times, activity durations, activity 

locations, and activity orders. These methods employ different models of activities but all 

share a motivation of finding changes in activity routines that indicate a health or security 

risk. In all cases the method is tested on a very small set of constrained activities but have 

the potential to be scaled to a richer set of activity details.

All anomaly detection algorithms suffer from a common problem: detecting too many false 

positive anomalies. Without constraining the type of anomalies that are of interest, most 

methods find excessive numbers of outliers. Many of these can be due to harmless situations 

such as visitors, trips away from home, and changes in smart home hardware. Hoque et al. 

[117], [118] address this challenge by integrating expert-provided explanations for known 

situations that may appear anomalous. In their approach, this group uses hierarchical 

clustering to group activity data points. Expert-provided rules are integrated for known 

events that may look like anomalies to an automated system. This approach could be further 

extended to continually obtain expert feedback that explains detected anomalies so that the 

number of false positives decreases and the number of true positives increases over time, not 

just for the detected anomalous situations but for others that are similar.

The activity-based anomaly methods that have been described up to this point model 

anywhere from 3 to 40 activities. In everyday behavior, though, these predefined activities 

only comprise at most 50% of an individual's daily routine [29]. In order to be thorough, 

smart home security systems need to model all aspects of a normal routine in order to catch 

every possible anomaly and important behavior change. Wang et al. [119] partially address 

this situation by discovering frequent sensor firing sequences that represent “activities”, then 

detecting anomalies among occurrences of these sequences. This is a promising direction for 

research but is extremely dependent upon the discovery method. This particular approach 

focuses purely on sensor state duration and resident trajectory, which may be insufficient for 

representing and analyzing complex activities.

Once activities are modeled and understood, anomalies can then be found within each 

activity. These anomalies may indicate that an intruder is attempting to emulate a known 

activity (and is making some mistakes) or that the resident is experiencing difficult in 

remembering how to successfully complete an activity. A secure smart home can detect such 

a situation and alert the resident in order to ensure that the home is safe and to assist the 

resident if needed in completing a task. Tong et al. [120] tackle this problem using hidden 

state conditional random fields (HCRF). A HCRF can be used to compare an observed 

activity with a database of activities performed normally. The most similar activity from the 

database provides a basis of comparison and the degree of dissimilarity between the 

observed activity and its closest match indicates the “abnormality” of the observe behavior.
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Das et al. [85] take this a step further by decomposing each modeled activity into individual 

steps. A one-class classifier is used to determine whether an activity occurrence is “normal”. 

If it is not, the type of error can be identified as an error of omission (a step is missing), 

substitution (an incorrect tool is used), irrelevant action (unnecessary steps are included), or 

inefficient action (a step is included that slows down or compromises the efficiency of action 

completion). This method can be used to not only determine if activity steps are unusual and 

therefore suspect, but also the type of error that was committed in order to identify a security 

risk or to correct the incomplete activity.

The paper that we have discussed come directly from the literature on behavior-based 

anomaly detection. However, techniques have been introduced in related fields that can be 

employed for activity-based anomaly detection and maintaining secure smart homes. As an 

example, the field of active learning for activity modeling is focused on detecting unusual 

activity-based data points. In this case, however, the reason for detecting these points is to 

determine the data points that will most greatly benefit from expert guidance in terms of 

providing an explanation and label for the data point. Active learning employs a machine 

learning algorithm to interactively query an expert (for example, a human annotator) to 

obtain a label for a sensor data point pulled from a pool of unlabeled data, U. Once the label 

is provided the data point is added to the labeled training set, L, and used to update the 

activity models for improved recognition performance, as shown in Figure 6. Active learning 

techniques often select data points that exhibit properties such as the most labeling 

uncertainty [121], [122] or the least consensus among a committee of classifiers [123]. As an 

example, the Optimized Probabilistic Active Learning (OPAL) [124] algorithm picks data 

points for labels that are not well understood by the current activity models and which are 

outliers with respect to the entire set of data points. These methods work closely with 

existing anomaly detection algorithms and activity classifiers and therefore can be useful as 

a component of behavior-based anomaly detection.

The last topic we consider in this section is rare event detection [125]–[128]. Rare events are 

events that occur very infrequently. While they may not be considered as anomalies by 

methods described in this section, they are found in less than 10% of the data and when they 

do occur the consequences are often negative and can be dramatic. This is a topic that is 

often investigated in areas such as insurance risk modeling, web modeling, and hardware 

fault detection. In many cases, researchers have found that normal events are similar to each 

other and rare events are quite different not only from normal events but from each other. 

For example, in the arena of credit card transactions normal transactions are very standard 

but fraudulent use varies in many ways. Anomaly detection can be used in some cases for 

rare event detection. However, the nature of rare events may be better understood than the 

general class of anomalies. For example, intrusion into a home is rare and negative but is 

understood. Similarly, a fall in the home is understood and while it may therefore not be 

considered an anomaly, it is important to detect. For this reason, supervised machine 

learning techniques can be used but researchers must design specialized methods to deal 

with the extreme class imbalance that occurs in these cases.

As we conclude the discussion of threat detection, we point out that much of the existing 

research in the field has focused on detecting behavior-based anomalies for health 
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applications (such as the one described in Scenario 2 at the beginning of the paper) rather 

than for home security. Monitoring the health of a smart home resident is indeed a critical 

part of ensuring that the resident is safe and secure in his or her own home. However, these 

techniques can be easily adapted to for intrusion detection and building-based anomalies, as 

well. Changes in a well-established routine may indicate that the person in the home is not 

the resident or that the building is not operating as normal. In any of these situations, steps 

should be taken by the home and/or the resident to make sure they are protected.

4.5. Security research in related areas

Much of the discussion in this paper has encompassed papers published on the topic of smart 

homes, behavior analysis, and building automation. To be thorough, we also need to 

highlight work in related areas that can be valuable when creating smart secure homes. 

Sensor data collected in smart homes is temporal by nature and anomaly detection 

techniques for time series data are abundant. These techniques often employ statistical 

methods like a moving average, an autoregressive moving average (ARMA), or an 

autoregressive integrated moving average (ARIMA) to predict a future value of a variable 

given past values. If the observed value is unexpected given the mean and variance of the 

prediction then an anomaly is detected. Kalman filters can extend these basic ideas to 

combine multiple sources of information when the information is possibly noisy. Change 

point detection methods [129] can also be applied to time series data such as smart home 

sensor firings. In this case, data from two consecutive time periods are examined to 

determine if they come from the same probability distribution. If the data are sufficiently 

different then a change has occurred, possibly due to a transition to a new activity or due to 

an anomaly.

There are also a number of approaches to anomaly detection in graph-based data [130]–

[133]. Graphs provide a natural representation for data that is rich in structure because 

independence is not assumed between individual data points. Instead, the nodes of a graph 

can represent the individual data points, or features, and nodes are connected by labeled or 

unlabeled edges when a relationship is exhibited between the points. While these methods 

employ some of the same basic ideas for anomaly detection as we have described for activity 

analysis and time series analysis, additional features can be extracted and integrated into the 

analysis which have been shown to be particularly valuable for security applications [134]–

[136].

Many of the time series-based anomaly detection methods quantify the degree of surprise 

that a data point exhibits and if the value is greater than a threshold, an anomaly is reported. 

As we have discussed throughout this paper, though, the methods frequently generate a large 

number of false positive anomalies. In the time series literature, randomization tests [137] 

are employed to reduce the number of false positives and this technique may be valuable for 

smart home applications as well. In this method, a generative model such as a hidden 

Markov model is learned from actual data and used to create synthetic data that is similar to 

the real data. A large number (e.g., n=1000) of anomaly detection runs can be performed on 

the simulated data. The fraction of runs in which the surprise value of the data exceeded the 

Dahmen et al. Page 14

J Reliab Intell Environ. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



real data surprise value can then be used as a p-value for the real anomaly and provides a 

method of quantifying confidence in the detected anomaly.

We have focused up to this point on services that a smart home can provide in terms of 

preventing, detecting, and responding to security threats. A natural issue arises when the 

smart home capabilities themselves are compromised. In such a case, the smart home can 

become a liability for a resident rather than an asset. Cases in which smart homes and smart 

home components are hacked are becoming well documented. Some investigators such as 

Hill [60] and Fernandes et al. [138] actually broke into and controlled other homes in order 

to assess the security of smart home infrastructures. Others have virtually entered private 

homes for nefarious reasons and have taken over the home's web cameras or devices [139], 

[140]. Recent efforts [141] have demonstrated that smart lighting technologies are 

susceptible to infiltration and even smart door locks themselves are vulnerable to a whole 

new breed of burglar: the computer hacker [142].

Smart home hackers often enter the premises by gaining access to a network [143]. 

However, relying on stand-alone security technologies does not ensure that they cannot be 

broken. For example, spoofing techniques can be used to imitate (spoof) picture or video of 

a resident in order to fool a camera [144] and can be accomplished on portable devices for 

ease of use by intruders [145]. Research such as the work by Lai and Tai [146] on detecting 

biometric spoofing thus needs to regularly be pursued to detect and prevent such attempts.

The ability to hack into connected systems is by no means a new issue that researchers face 

[58], [147]. Computer networks regularly face password attackers, sniffers that spy on 

network user traffic, IP spoofers, and man-in-the-middle attackers by individuals to intercept 

and alter communication between people or devices. Attackers may seek to steal 

information, gain access to devices, corrupt data, or introduce malicious data and programs. 

Because of the increasing maturity of smart homes, however, smart home researchers, 

designers, and residents now need to be aware of these issues. Just as we have demonstrated 

in this paper for smart home data, anomaly detection is a popular topic for network 

researchers as well [148] to detect and prevent these threats [143]. Smart homes offer 

unprecedented means to provide safety, security, comfort and productivity. Continued 

research is necessary to ensure that the security benefits from these homes outweigh the 

potential risks.

5. Conclusions and Future Research Directions

In this paper, we examined the potential and existing technologies that can transform any 

home into a smart secure home. As the summary in Figure 7 shows, a wide range of 

individual technology components have been developed to sense, detect, assess, and respond 

to a variety of secure threats in home settings. As our summary has made clear, there is also 

a tremendous need for ongoing research to improve these technologies and to prevent new 

security risks from arising as a result of transforming homes into smart homes.

This look at existing work raises issues that can be addressed with new research efforts. 

Throughout the discussion we highlighted the fact that it is difficult to characterize what 
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type of anomaly will be of interest for smart home residents. In fact, the distinguishing 

factor between data outliers, behavioral anomalies, and rare events of interest is the 

explanation for the event. Continued research can thus help to formalize the nature of 

behavioral anomalies that are particularly critical for security application. This step will 

allow data mining techniques to focus more effectively on detecting appropriate patterns in 

smart home data.

Another direction for continued research is to automate the explanation of anomalous events. 

For example, Sprint et al. [54] employ a virtual classifier to distinguish normal from 

abnormal behavior in a way that generates rule-based explanations for the differences. This 

approach could be used to more quickly verify the accuracy and criticality of the detected 

anomaly. It would also be interesting to see if anomaly explanations can generalize to entire 

populations. For example, what may first seem like an anomaly may indeed be a fall that 

occurred in the home and is thus a rare event. This type of event can then be learned for all 

smart homes, lowering false positive rates for new smart homes and reducing the amount of 

efforts residents must expend in explaining the events and training the system.

Yet another consideration for future research and development is sensor fusion. Instead of 

relying on a single activity-based anomaly detector or biometric device, information can be 

combined from multiple sources to increase confidence in the assessment of collected 

information. They can also complement each other's strengths and weaknesses. For example, 

when behavior analysis detects a potential anomaly, other components such as a camera 

system can be initiated to confirm to deny that the situation is threatening.

Finally, ongoing research must consider human factors when designing smart secure homes. 

Research would be valuable to consider how many false positives residents will tolerate as 

well as what type of system training they can provide. The actions that a home takes to 

ensure resident safety must be understandable and comfortable for residents or users will 

quickly remove all smart components from their home. Once the user understands the 

workings of the system and comes to know what to expect in its actions, he or she can trust 

that the home will truly act in a way to keep them secure and comfortable.
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Figure 1. 
A secure smart home senses threats, assesses them, and takes action to keep the home and 

residents safe.
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Figure 2. 
Technologies found in a secure smart home.
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Figure 3. 
Original images and extracted foregrounds.
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Figure 4. 
MMPP to detect visitors. Here z(t) = -1 if there is an unusual lack of visitors, 0 if activity is 

normal, and 1 if there is an unusual visit.
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Figure 5. 
The graphical user interface by Virone et al. [108] shows anomalies for each activity (room) 

by hour and by day. The plots at the bottom of the screen provide a view of the typical 

location-based circadian activity rhythm and deviations from normal rhythms.
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Figure 6. 
The active learning cycle.
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Figure 7. 
Existing smart secure home technologies.
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